Maximum likelihood estimators of a long-memory process from discrete observations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum likelihood estimators and random walks in long memory models

We consider statistical models driven by Gaussian and non-Gaussian self-similar processes with long memory and we construct maximum likelihood estimators (MLE) for the drift parameter. Our approach is based in the non-Gaussian case on the approximation by random walks of the driving noise. We study the asymptotic behavior of the estimators and we give some numerical simulations to illustrate ou...

متن کامل

Maximum Likelihood Estimators for a Supercritical Branching Diffusion Process

The log-likelihood of a nonhomogeneous Branching Diffusion Process under several conditions assuring existence and uniqueness of the diffusion part and nonexplosion of the branching process. Expressions for different Fisher information measures are provided. Using the semimartingale structure of the process and its local characteristics, a Girsanov-type result is applied. Finally, an Ornstein-U...

متن کامل

The Convergence of Lossy Maximum Likelihood Estimators

Given a sequence of observations (Xn)n≥1 and a family of probability distributions {Qθ}θ∈Θ, the lossy likelihood of a particular distribution Qθ given the data Xn 1 := (X1,X2, . . . ,Xn) is defined as Qθ(B(X 1 ,D)), where B(Xn 1 ,D) is the distortion-ball of radius D around the source sequence X n 1 . Here we investigate the convergence of maximizers of the lossy likelihood.

متن کامل

Asymptotic Distributions of Quasi-Maximum Likelihood Estimators

Asymptotic properties of MLEs and QMLEs of mixed regressive, spatial autoregressive models are investigated. The stochastic rates of convergence of the MLE and QMLE for such models may be less than the √ n-rate under some circumstances even though its limiting distribution is asymptotically normal. When spatially varying regressors are relevant, the MLE and QMLE of the mixed regressive, autoreg...

متن کامل

Maximum likelihood estimation of linear continuous- time long-memory processes with discrete-time data

We develop a new class of Continuous-time Auto-Regressive Fractionally Integrated Moving-Average (CARFIMA) models which are useful for modelling regularly-spaced and irregularly-spaced discrete-time long-memory data. We derive the autocovariance function of a stationary CARFIMA model, and study maximum likelihood estimation of a regression model with CARFIMA errors, based on discrete-time data ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Difference Equations

سال: 2018

ISSN: 1687-1847

DOI: 10.1186/s13662-018-1611-1